Chinese Journal OF Rice Science ›› 2016, Vol. 30 ›› Issue (1): 99-104.DOI: 10.16819/j.1001-7216.2016.5153
• Reviews • Previous Articles Next Articles
XUQian-kun, De-yong REN, Zi-zhuang LI, Da-li ZENG, Long-biao GUO, Qian QIAN*()
Received:
2015-10-19
Revised:
2015-10-30
Online:
2016-01-10
Published:
2016-01-10
Contact:
Qian QIAN
About author:
# These authors contributed equally to this work;
徐乾坤, 任德勇, 李自壮, 曾大力, 郭龙彪, 钱前*()
通讯作者:
钱前
作者简介:
# 共同第一作者;
基金资助:
CLC Number:
XUQian-kun, De-yong REN, Zi-zhuang LI, Da-li ZENG, Long-biao GUO, Qian QIAN. Research Progresses in Rice Spikelet Glume Development[J]. Chinese Journal OF Rice Science, 2016, 30(1): 99-104.
徐乾坤, 任德勇, 李自壮, 曾大力, 郭龙彪, 钱前. 水稻小穗颖壳发育的研究进展[J]. 中国水稻科学, 2016, 30(1): 99-104.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2016.5153
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
MOSAIC FLORAL ORGANS1 (MFO1) | 2 | 内稃内卷,维管束增多,边缘组织缺失,主体结构过度生长, 内稃获得部分外稃的特征 |
CHIMERIC FLORAL ORGANS1 (CFO1) | 1 | 内稃边缘区域扩大且外表面硅化 |
DEPRESSED PALEA1 (DP1) | 6 | 突变导致内稃主体结构完全丢失 |
RETARDED PALEA1 (REP1) | 9 | 内稃主体部分显著退化,内稃变小,而内稃边缘区域则变宽 |
MULTI-FLORET SPIKELET1 (MFS1) | 5 | 内稃的主体部分退化,严重的仅剩下内稃的边缘部分 |
CURVED CHIMERIC PALEA1/DEFORMED FLORAL ORGAN1 (CCP1/DFO1) | 1 | 内稃卷曲皱缩,内稃雌蕊化,外稃特征未发生任何改变 |
LEAFY HULL STERILE1 (LHS1) | 3 | 内外稃和浆片都伸长,同时向叶状器官转化, 内稃的 维管束增多,类似于外稃 |
DEGENERATIVE PALEA (DEP) | 7 | 内外稃都伸长,但内部花器官未受影响 |
STAMENLESS 1 (SL1) | 1 | 内外稃横向生长都受到抑制,变小且开裂不能闭合,外稃 向内弯曲,雄蕊向雌蕊转变 |
OPEN BEAK (OPB) | 8 | 内外稃横向生长都受到抑制,变小且开裂不能闭合,外稃 向内弯曲,雄蕊向雌蕊转变 |
DEGENERATED HULL1 (DH1) | 2 | 内外稃严重退化,仅剩下透明的膜状结构,有些甚至变成 丝状器官 |
TRIANGULAR HULL1 (TH1)/ABNORMAL FLOWER AND DWARF1 (AFD1) | 2 | 内外稃横向和纵向生长均被影响,内外稃变小、增厚 |
DROOPING LEAF (DL) | 3 | 叶片披垂,且内稃伸长 |
Table 1 Relative genes of lemma and palea.
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
MOSAIC FLORAL ORGANS1 (MFO1) | 2 | 内稃内卷,维管束增多,边缘组织缺失,主体结构过度生长, 内稃获得部分外稃的特征 |
CHIMERIC FLORAL ORGANS1 (CFO1) | 1 | 内稃边缘区域扩大且外表面硅化 |
DEPRESSED PALEA1 (DP1) | 6 | 突变导致内稃主体结构完全丢失 |
RETARDED PALEA1 (REP1) | 9 | 内稃主体部分显著退化,内稃变小,而内稃边缘区域则变宽 |
MULTI-FLORET SPIKELET1 (MFS1) | 5 | 内稃的主体部分退化,严重的仅剩下内稃的边缘部分 |
CURVED CHIMERIC PALEA1/DEFORMED FLORAL ORGAN1 (CCP1/DFO1) | 1 | 内稃卷曲皱缩,内稃雌蕊化,外稃特征未发生任何改变 |
LEAFY HULL STERILE1 (LHS1) | 3 | 内外稃和浆片都伸长,同时向叶状器官转化, 内稃的 维管束增多,类似于外稃 |
DEGENERATIVE PALEA (DEP) | 7 | 内外稃都伸长,但内部花器官未受影响 |
STAMENLESS 1 (SL1) | 1 | 内外稃横向生长都受到抑制,变小且开裂不能闭合,外稃 向内弯曲,雄蕊向雌蕊转变 |
OPEN BEAK (OPB) | 8 | 内外稃横向生长都受到抑制,变小且开裂不能闭合,外稃 向内弯曲,雄蕊向雌蕊转变 |
DEGENERATED HULL1 (DH1) | 2 | 内外稃严重退化,仅剩下透明的膜状结构,有些甚至变成 丝状器官 |
TRIANGULAR HULL1 (TH1)/ABNORMAL FLOWER AND DWARF1 (AFD1) | 2 | 内外稃横向和纵向生长均被影响,内外稃变小、增厚 |
DROOPING LEAF (DL) | 3 | 叶片披垂,且内稃伸长 |
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
LONG STERILE LEMMA/ELONGATED EMPTY GLUME1 (G1/ELE) | 7 | 护颖伸长,形态和结构上与外稃相似,包含四种细胞层和4~5条维管束 |
OsMADS34 | 3 | 护颖伸长,细胞层次和外表面结构都与外稃类似,具有5条维管束 |
SUPER APICAL DORMANT (SAD1) | 8 | 护颖不同程度伸长,其外表面具有毛状体和突起,形态结构上与外稃部分类似 |
ABERRANT SPIKELET AND PANICLE1 (ASP1) | 8 | 护颖不同程度伸长,其外表面具有毛状体和突起,形态结构上与外稃部分类似 |
Table 2 Relative genes of sterile lemma.
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
LONG STERILE LEMMA/ELONGATED EMPTY GLUME1 (G1/ELE) | 7 | 护颖伸长,形态和结构上与外稃相似,包含四种细胞层和4~5条维管束 |
OsMADS34 | 3 | 护颖伸长,细胞层次和外表面结构都与外稃类似,具有5条维管束 |
SUPER APICAL DORMANT (SAD1) | 8 | 护颖不同程度伸长,其外表面具有毛状体和突起,形态结构上与外稃部分类似 |
ABERRANT SPIKELET AND PANICLE1 (ASP1) | 8 | 护颖不同程度伸长,其外表面具有毛状体和突起,形态结构上与外稃部分类似 |
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
FRIZZY PANICLE (FZP) | 7 | 没有正常的护颖,在对应的位置出现数目不确定的副护颖 |
SUPERNUMERARY BRACT (SNB) | 7 | 没有正常的护颖,在对应的位置出现数目不确定的副护颖 |
MFS1 | 5 | 护颖退化,形态结构类似副护颖 |
OsINDETERMINATE SPIKELET1 (OsIDS1) | 3 | 护颖退化,形态结构类似副护颖 |
OsMADS34 | 3 | 副护颖不同程度伸长,外表面结构在一定程度上具有护颖和外稃的特征 |
ASP1 | 8 | 副护颖不同程度伸长,外表面结构在一定程度上具有护颖和外稃的特征 |
Table 3 Relative genes of rudimentary glume.
基因名称 Gene name | 染色体 Chromosome | 突变表型 Phenotype of mutant |
---|---|---|
FRIZZY PANICLE (FZP) | 7 | 没有正常的护颖,在对应的位置出现数目不确定的副护颖 |
SUPERNUMERARY BRACT (SNB) | 7 | 没有正常的护颖,在对应的位置出现数目不确定的副护颖 |
MFS1 | 5 | 护颖退化,形态结构类似副护颖 |
OsINDETERMINATE SPIKELET1 (OsIDS1) | 3 | 护颖退化,形态结构类似副护颖 |
OsMADS34 | 3 | 副护颖不同程度伸长,外表面结构在一定程度上具有护颖和外稃的特征 |
ASP1 | 8 | 副护颖不同程度伸长,外表面结构在一定程度上具有护颖和外稃的特征 |
[1] | Bommert P, Satoh-Nagasawa N, Jackson D, et al.Genetics and evolution of inflorescence and flower development in grasses.Plant Cell Physiol, 2005, 46: 69-78. |
[2] | Itoh J, Nonomura K, Ikeda K, et al.Rice plant development: From zygote to spikelet.Plant Cell Physiol, 2005, 46: 23-47. |
[3] | Ambrose B A, Lerner D R, Ciceri P, et al.Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots.Mol Cell, 2000, 5: 569-597. |
[4] | Kellogg E A.The evolutionary history of Ehrhartoideae, Oryzeae, and Oryza. Rice, 2009, 2: 1-14. |
[5] | Hong L, Qian Q, Zhu K, et al.ELE restrains empty glumes from developing into lemmas.J Genet Genom,2010, 37: 101-105. |
[6] | Schmidt R J, Ambrose B A.The blooming of grass flower development.Curr Opin Plant Biol, 1998, 1: 60-67. |
[7] | Coen E S, Meyerowitz E M.The war of the whorls: Genetic interactions controlling flower development.Nature,1991,53: 31-37. |
[8] | Weigel D, Meyerowitz E M.The ABCs of floral homeotic genes.Cell,1994,78: 203-209. |
[9] | Theissen G, Saedler H.Plant biology. Floral quartets.Nature, 2001, 409: 469-471. |
[10] | Soltis D E, Chanderbali A S, Kim S, et al.The ABC model and its applicability to basal angiosperms.Ann Bot, 2007,100: 155-163. |
[11] | Litt A, Kramer E M.The ABC model and the diversification of floral organ identity.Semin Cell Dev Biol, 2010,21: 129-137. |
[12] | Kyozuka J, Kobayashi T, Morita M, et al.Spatially andtemporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes.Plant Cell Physiol, 2004,1: 710-718. |
[13] | Shri R Y, Kalika P, Usha V.Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ.Genetics, 2007, 176: 283-294. |
[14] | Rita A, Pinky A, Swatismita R, et al.MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress.BMC Genom, 2007, 8: 242. |
[15] | Xiao H, Wang Y, Liu D F, et al.Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference.Plant Mol Biol, 2003, 52: 957-966. |
[16] | Yun D P, Liang W Q, Dreni L, et al.OsMADS16 genetically Interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice.Mol Plant, 2013, 6: 743-756. |
[17] | Li H F, Liang W P, Yin C S, et al.Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy.Plant Physiol,2011, 156: 263-274. |
[18] | Hu Y, Liang W P, Yin C S, et al.Interactions of OsMADS1 with floral homeotic genes in rice flower development.Mol Plant, 2015, 8:1366-1384. |
[19] | Lin X L, Wu F, Du X Q, et al.The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice (Oryza sativa) spikelets are in fact rudimentary lemmas.New Phytiol, 2013, 202: 689-702. |
[20] | Kellogg E A.Evolutionary history of the grasses.Plant Physiol, 2001, 125: 1198-1205. |
[21] | Ohmori S, Kimizu M, Sugita M, et al.MOSAIC FLORAL ORGANS1, an AGL6-like MADS box gene, regulates floral organ identity and meristem fate in rice.Plant Cell, 2009, 21: 3008-3025. |
[22] | Ren D Y, Li Y F, Zhao F M, et al.MULTI-FLORET SPIKELET1, which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice.Plant Physiol, 2013, 162: 872-884. |
[23] | Thompson B E, Bartling L, Whipple C, et al.Bearded-ear encodes a MADS box transcription factor critical for maize floral development.Plant Cell, 2009, 21:2578-2590. |
[24] | Sang X, Li Y, Luo Z, et al.CHIMERIC FLORAL ORGANS1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice.Plant Physiol, 2012, 160: 788-807. |
[25] | Jin Y, Luo Q, Tong H, et al.An AT-hook gene is required for palea formation and floral organ number control in rice.Dev Biol, 2011, 359: 277-288. |
[26] | Gallavotti A, Malcomber S, Gaines C, et al.BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears.Plant Cell, 2011, 23: 1756-1771. |
[27] | Yuan Z, Gao S, Xue D W, et al.RETARDED PALEA1 controls palea development and floral zygomorphy in rice.Plant Physiol, 2009, 149: 253-244. |
[28] | Ren D Y, Li Y F, Wang Z, et al.Identification and gene mapping of a multi-floret spikelet 1 (mfs1) mutant associated with spikelet development in rice.J Integer Agr, 2012, 11: 1574-1579. |
[29] | Yan D W, Zhang X M, Zhang L, et al.CURVED CHIMERIC PALEA 1 encoding an EMF1-like protein maintains epigenetic repression of OsMADS58 in rice palea development.Plant J, 2015, 82: 12-24. |
[30] | Prasad K, Parameswaran S, Vijayraghavan U.OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs.Plant J, 2005, 43: 915-928. |
[31] | Wang K, Tang D, Hong L, et al.DEP and AFO regulate reproductive habit in rice.PLoS Genet, 2010, 1: 1-9. |
[32] | Duan Y L, Diao Z J, Liu H Q, et al.Molecular cloning and functional characterization of OsJAG gene based on a complete-deletion mutant in rice (Oryza sativa L.).Plant Mol Biol, 2010, 74:605-615. |
[33] | Xiao H, Tang J F, Li Y F, et al.STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice.Plant J, 2009, 59:789-801. |
[34] | Li A, Zhang Y, Wu X, et al.A LOB domain-like protein required for glume formation in rice.Plant Mol Biol, 2008, 66:491-502. |
[35] | Sun Q W, Zhou D X.Rice jmjC domain-containing gene JMJ706 encodes H3K9 demethylase required for floral organ development.Proc Natl Acad Sci USA, 2008, 105:13679-13684. |
[36] | Li X J, Sun L J, Tan L B, et al.TH1, a DUF640 domain-like gene controls lemma and palea development in rice.Plant Mol Biol, 2012, 78: 351-359. |
[37] | Ren D, Rao Y, Wu L, et al.The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.J Integr Plant Biol, 2015, doi: 10.1111/jipb.12441. |
[38] | Toriba T, Hirano H Y.The DROOPING LEAF and OsETTIN2 genes promote awn development in rice.Plant J, 2014, 77: 616-626. |
[39] | Li H, Liang W, Hu Y, et al.Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate.Plant Cell, 2011,23: 2536-2552. |
[40] | Takeoka Y, Shimizu M, Wada T, et al.Science of the Rice Plant. Vol I. Nobunkyo,Tokyo, 1993, 295-326. |
[41] | Yoshida A, Suzaki T, Tanaka W, et al.The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet.Proc Natl Acad Sci USA, 2009, 106:20103-20108. |
[42] | Kobayashi K, Maekawa M, Miyao A, et al.PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice.Plant Cell Physiol, 2010, 51: 47-57. |
[43] | Terrell E E, Peterson P M, Wergin W P.Epidermal features and spikelet micromorphology in Oryza and related genera (Poaceae: Oryzeae).Smithsonian Contr Bot, 2001, 91:1-50. |
[44] | Zamora A, Barboza C, Lobo J, et al.Diversity of native rice (Oryza poaceae) species of Costa Rica.Genet Res Crop Evol, 2003, 50: 855-870. |
[45] | Gao X C, Liang W Q, Yin C S, et al.The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development.Plant Physiol, 2010, 153:728-740. |
[46] | Kaoru K, Masahiko M, Akio M, et al.PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice.Plant Cell Physiol, 2010, 51: 47-57. |
[47] | Li W Q, Akiko Y, Megumu T, et al.SAD1, an RNA polymerase I subunit A34.5 of rice, interacts with Mediator and controls various aspects of plant development.Plant J, 2015, 81: 282-291. |
[48] | Akiko Y, Yoshihiro O, Hidemi K, et al.ABERRANT SPIKELET AND PANICLE1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice.Plant J, 2012, 70: 327-339. |
[49] | Lee D Y, An G.Two AP2 family genes, Supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice.Plant J, 2012, 69: 445-461. |
[50] | Lee D Y, Lee J, Moon S, et al.The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem.Plant J, 2007, 49: 64-78. |
[51] | Tsuneo K, Akira H.A novel frameshift mutant allele, fzp-10, affecting the panicle architecture of rice.Euphytica, 2012, 184: 65-72. |
[52] | Yi G, Choi J H, Jeong E G, et al.Morphological and molecular characterization of a new frizzy panicle mutant, "fzp-9(t)", in rice (Oryza sativa L.).Hereditas, 2005, 142: 92-97. |
[53] | Mai K, Atsushi C, Yasuo N, et al.FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.Development, 2003, 130: 3841-3850. |
[54] | Li M, Xiong G, Li R, et al.Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth.Plant J, 2009, 60: 1055-1069. |
[55] | Li Y B, Fan C C, Xing Y Z, et al.Natural variation in GS5 plays an important role in regulating grain size and yield in rice.Nat Genet, 2011, 12: 1266-1269. |
[56] | Xu C J, Liu Y, Li Y B, et al.Differential expression of GS5 regulates grain size in rice.J Exp Bot, 2015, 9: 2611-2623. |
[57] | Wang S K, Wu K, Yuan Q B, et al.Control of grain size, shape and quality by OsSPL16 in rice.Nat Genet, 2012, 8: 950-954. |
[58] | Heang D, Sassa H.Antagonistic actions of HLH/bHLH proteins are involved in grain length and weight in rice.PLoS One, 2012, 2: e31325. |
[59] | Shuhei S, Izumi K, Tsuyu A, et al.Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice.Rice, 2012, 5: 4. |
[60] | Kanako K, Shigeru K, Katsuyuki O, et al.A novel kinesin 13 protein regulating rice seed length.Plant Cell Physiol, 2010, 8: 1315-1329. |
[61] | Wang Y X, Xiong G S, Hu J, et al.Copy number variation at the GL7 locus contributes to grain size diversity in rice.Nat Genet, 2015, 8: 944-948. |
[62] | Zhu W, Tong J P, Wu Y J.Preliminary study and selection of rice germplasm with glume gaping resistance.J Plant Genet Resour, 2004, 5: 52-55. |
[63] | Wei X G, Zhang X W, Shao G N, et al.Fine mapping of BH1, a gene controlling lemma and palea development in rice.Plant Cell Rep, 2013, 9: 1455-1463. |
[1] | HOU Xiaoqin, WANG Ying, YU Bei, FU Weimeng, FENG Baohua, SHEN Yichao, XIE Hangjun, WANG Huanran, XU Yongqiang, WU Zhihai, WANG Jianjun, TAO Longxing, FU Guanfu. Mechanisms Behind the Role of Potassium Fulvic Acid in Enhancing Salt Tolerance in Rice Seedlings [J]. Chinese Journal OF Rice Science, 2024, 38(4): 409-421. |
[2] | SHEN Yumin, CHEN Mingliang, XIONG Huanjin, XIONG Wentao, WU Xiaoyan, XIAO Yeqing. Phenotypic Analysis and Fine Mapping of blg1(beak like grain 1), a Rice Mutant with Abnormal Palea and Lemma Development [J]. Chinese Journal OF Rice Science, 2023, 37(3): 225-232. |
[3] | LIANG Cheng, XIANG Xunchao, ZHANG Ouling, YOU Hui, XU Liang, CHEN Yongjun. Analyses on Agronomic Traits and Genetic Characteristics of Two New Plant-architecture Lines in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(2): 171-180. |
[4] | Yujun ZHU, Ziwei ZUO, Zhenhua ZHANG, Yeyang FAN. A New Approach for Fine-mapping and Map-based Cloning of Minor-Effect QTL in Rice [J]. Chinese Journal OF Rice Science, 2021, 35(4): 407-414. |
[5] | Yali ZHENG, Linchuang YU, Xiaoxiao AN, Xinle CHENG, Lijun REN, Zilong SU, Xiaoya ZHENG, Tao LAN. Identification of a Knockout Mutant of OsWOX3B Gene in Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2021, 35(2): 112-120. |
[6] | Yiwei KANG, Yuyu CHEN, Yingxin ZHANG. Research Progress and Breeding Prospects of Grain Size Associated Genes in Rice [J]. Chinese Journal OF Rice Science, 2020, 34(6): 479-490. |
[7] | Yanhua CHEN, Yaliang WANG, Defeng ZHU, Qinghua SHI, Huizhe CHEN, Jing XIANG, Yikai ZHANG, Yuping ZHANG. Mechanism of Exogenous Brassinolide in Alleviating High Temperature Injury at Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2019, 33(5): 457-466. |
[8] | Jingfang LI, Yunlu TIAN, Xi LIU, Shijia LIU, Liangming CHEN, Ling JIANG, Wenwei ZHANG, Dayong XU, Yihua WANG, Jianmin WAN. The Guanylate Kinase OsGK1 is Essential for Seed Development in Rice [J]. Chinese Journal OF Rice Science, 2018, 32(5): 415-426. |
[9] | Peng-yi PAN, Jian-ping ZHU, Yun-long WANG, Yuan-yuan HAO, Yue CAI, Wen-wei ZHANG, Ling JIANG, Yi-hua WANG, Jian-min WAN. Phenotyping and Gene Cloning of a Floury Endosperm Mutant ws in Rice [J]. Chinese Journal OF Rice Science, 2016, 30(5): 447-457. |
[10] | Min XI, Zhao-miao LIN, Yan-ling ZHAO, Xin-cheng ZHANG, Xiao-yu YANG, Zheng-hui LIU, Gang-hua LI, Shao-hua WANG, Yan-feng DING. Effects of Nitrogen Fertilizer Application on the Formation of White-belly and White-core as Well as Biochemical Composition of japonica Rice Grains [J]. Chinese Journal OF Rice Science, 2016, 30(2): 193-199. |
[11] | Peng WANG, Yue CAI, Wei-wei CHEN, Jing MA, Xin-gang CHEN, Xiao-jie TANG, Xiao-man YOU, Fei KONG, Jie ZHANG, Hai-gang YAN, Guo-xiang WANG, Ling JIANG, Wen-wei ZHANG, Jian-min WAN. Phenotyping and Gene Cloning of a Small-grain Dwarf Mutant sgd1(t) in Rice [J]. Chinese Journal OF Rice Science, 2016, 30(1): 1-9. |
[12] | Zuo-zhen DONG, Liang-huan WU, Jie CHAI, Yuan-li CHEN, Yue-zhong ZHU. Effects of Different Nitrogen, Phosphorus and Potassium Treatments on Rice Yield, Quality, Nutrient Absorption-Utilization and Economic Benefit of Zhongzheyou 1 in Central Zhejiang Province,China [J]. Chinese Journal OF Rice Science, 2015, 29(4): 399-407. |
[13] | Da SU, Fu-biao WANG, Bing-ting LEI, Jue WANG, Gang PAN, Fang-min CHENG. The Response of Phytic Acid and Its Expression Profiles in Rice (Oryza sativa L.) Grain as Induced by Phosphorus Supply [J]. Chinese Journal OF Rice Science, 2015, 29(2): 159-166. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||